Skip to main content

Advertisement

Log in

Prediction of Higher Heating Value of Solid Biomass Fuels Using Artificial Intelligence Formalisms

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The higher heating value (HHV) is an important property defining the energy content of biomass fuels. A number of proximate and/or ultimate analysis based predominantly linear correlations have been proposed for predicting the HHV of biomass fuels. A scrutiny of the relationships between the constituents of the proximate and ultimate analyses and the corresponding HHVs suggests that all relationships are not linear and thus nonlinear models may be more appropriate. Accordingly, a novel artificial intelligence (AI) formalism, namely genetic programming (GP) has been employed for the first time for developing two biomass HHV prediction models, respectively using the constituents of the proximate and ultimate analyses as the model inputs. The prediction and generalization performance of these models was compared rigorously with the corresponding multilayer perceptron (MLP) neural network based as also currently available high-performing linear and nonlinear HHV models. This comparison reveals that the HHV prediction performance of the GP and MLP models is consistently better than that of their existing linear and/or nonlinear counterparts. Specifically, the GP- and MLP-based models exhibit an excellent overall prediction accuracy and generalization performance with high (>0.95) magnitudes of the coefficient of correlation and low (<4.5 %) magnitudes of mean absolute percentage error in respect of the experimental and model-predicted HHVs. It is also found that the proximate analysis-based GP model has outperformed all the existing high-performing linear biomass HHV prediction models. In the case of ultimate analysis-based HHV models, the MLP model has exhibited best prediction accuracy and generalization performance when compared with the existing linear and nonlinear models. The AI-based models introduced in this paper due to their excellent performance have the potential to replace the existing biomass HHV prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural network

CC:

Coefficient of correlation

EBP:

Error back propagation

GA:

Genetic algorithms

GP:

Genetic programming

HHV:

Higher heating value

MAPE:

Mean absolute percentage error

MIMO:

Multiple input–multiple output

MISO:

Multiple input–single output

MLP:

Multilayer perceptron neural network

RMSE:

Root mean squared error

SVR:

Support vector regression

References

  1. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43. doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  2. Boundy B, Diegel SW, Wright L, Davis SC (2011) Biomass resources overview in biomass energy data book, 4th edn. U.S. Department of Energy. http://cta.ornl.gov/bedb. Accessed 06 April 2013

  3. Ciolkosz D (2010) Characteristics of biomass as a heating fuel. Document Code #UB043, Pennsylvania State University, pp 1–4. http://extension.psu.edu/pubs/ub043. Accessed 10 April 2013

  4. Tahir MHN, Casler MD, Moore KJ, Brummer EC (2011) Biomass yield and quality of reed canary grass under five harvest management systems for bioenergy production. Bioenerg Res 4:111–119. doi:10.1007/s12155-010-9105-3

    Article  Google Scholar 

  5. Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84:487–494. doi:10.1016/j.fuel.2004.10.010

    Article  CAS  Google Scholar 

  6. Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg 28(5):499–507. doi:10.1016/j.biombioe.2004.11.008

    Article  CAS  Google Scholar 

  7. Jimennez L, Gonzales F (1991) Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel 70:947–950. doi:10.1016/0016-2361(91)90049-G

    Article  Google Scholar 

  8. Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analysis. Fuel 90:1128–1132. doi:10.1016/j.fuel.2010.11.031

    Article  CAS  Google Scholar 

  9. Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez J (2001) Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80:1567–1571. doi:10.1016/S0016-2361(01)00034-5

    Article  CAS  Google Scholar 

  10. Daya Ram N, Abdul Salam P (2012) Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel 99:55–63. doi:10.1016/j.fuel.2012.04.015

    Article  CAS  Google Scholar 

  11. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. doi:10.1016/S0016-2361(01)00131-4

    Article  CAS  Google Scholar 

  12. Milne TA, Brennan AH, Glenn BH (1990) Source book of methods of analysis for biomass and biomass conversion processes. Elsevier, London

    Google Scholar 

  13. Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544:191–198. doi:10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  14. ECN Phyllis (2012) The composition of biomass and waste. http://ecn.nl/phyllis/single.html. Accessed 09 April 2013

  15. Hofbauer H, BIOBIB (2012) A database for biofuels. Institute of Chemical Engineering, Vienna University of Technology, Austria, Vienna. http://vt.tuwien.ac.at/biobib/info.html. Accessed 09 April 2013

  16. IEA Bioenergy Task 32 (2013) Biomass combustion and cofiring. http://ieabcc.nl/database/biomass.php. Accessed 09 April 2013

  17. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, Cambridge

    Google Scholar 

  18. Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Published via http://lulu.com/ and freely available at http://gp-field-guide.org.uk/; (With contributions by J. R. Koza). Accessed 22 January 2013

  19. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann, San Francisco

  20. Wedge DC, Das A, Dost R, Kettle J, Madec M, Morrison JJ, Grell M, Kell DB, Richardson TH, Yeates S, Turner ML (2009) Real-time vapor sensing using an OFET-based electronic nose and genetic programming. Sens Actuators B 143(1):365–372. doi:10.1016/j.snb.2009.09.030

    Article  CAS  Google Scholar 

  21. Wang XH, Li YG (2010) Stochastic GP synthesis of heat-integrated nonsharp distillation sequences. Chem Eng Res Des 88(1):45–54. doi:10.1016/j.cherd.2009.06.012

    Article  CAS  Google Scholar 

  22. Hennessy K, Madden MG, Conroy J, Ryder AG (2005) An improved genetic programming technique for the classification of Raman spectra. Knowl-Based Syst 18(4–5):217–224. doi:10.1016/j.knosys.2004.10.001

    Article  Google Scholar 

  23. Gray GJ, Murray-Smith DJ, Yun L, Sharman KC, Weinbrenner T (1998) Nonlinear model structure identification using genetic programming. Control Eng Pract 6(11):1341–1352. doi:10.1016/S0967-0661(98)00087-2

    Article  Google Scholar 

  24. Yadavalli VK, Dahule RK, Tambe SS, Kulkarni BD (1999) Obtaining functional form for chaotic time series evolution using genetic algorithm. Chaos 9(3):789–794. doi:10.1063/1.166452

    Article  PubMed  Google Scholar 

  25. Banzhaf W, Langdon WB (2002) Some considerations on the reason for bloat. Genet Program Evolvable Mach 3:81–91. doi:10.1023/A:1014548204452

    Article  Google Scholar 

  26. Patel SU, Kumar BJ, Badhe YP, Sharma BK, Saha S, Biswas S, Chaudhury A, Tambe SS, Kulkarni BD (2007) Estimation of gross calorific value of coals using artificial neural networks. Fuel 86:334–344. doi:10.1016/j.fuel.2006.07.036

    Article  CAS  Google Scholar 

  27. Chavan PD, Sharma T, Mall BK, Rajurkar BD, Tambe SS, Sharma BK, Kulkarni BD (2012) Development of data-driven models for fluidized-bed coal gasification process. Fuel 93:44–51. doi:10.1016/j.fuel.2011.11.039

    Article  CAS  Google Scholar 

  28. Kesgin U (2004) Genetic algorithm and artificial neural network for engine optimisation of efficiency and NO x emission. Fuel 83(7–8):885–895. doi:10.1016/j.fuel.2003.10.025

    Article  CAS  Google Scholar 

  29. Tigas G, Lefakis P, Ioannou K, Hasekioglou A (2013) Evaluation of artificial neural networks as a model for forecasting consumption of wood products. Int J Data Anal Tech Strateg 5(1):38–48. doi:10.1504/IJDATS.2013.051739

    Article  Google Scholar 

  30. Ioannou K, Arabatzis G, Lefakis P (2009) Predicting the prices of forest energy resources with the use of artificial neural networks (ANNs). The case of conifer fuel wood in Greece. J Environ Prot Ecol 10(3):678–694

    Google Scholar 

  31. Koutroumanidis T, Ioannou K, Arabatzis G (2009) Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model. Energ Policy 37(9):3627–3634. doi:10.1016/j.enpol.2009.04.024

    Article  Google Scholar 

  32. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. doi:10.1038/323533a0

    Article  Google Scholar 

  33. Tambe SS, Kulkarni BD, Deshpande PB (1996) Elements of artificial neural networks with selected applications in chemical engineering, and chemical & biological sciences. Simulation & Advanced Controls, Louisville

    Google Scholar 

  34. Freeman JA, Skapura DM (1991) Neural Networks: Algorithms, Applications, and Programming Techniques. Addison-Wesley, Reading

    Google Scholar 

  35. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

  36. Nandi S, Badhe Y, Lonari J, Sridevi U, Rao BS, Tambe SS, Kulkarni BD (2004) Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst. Chem Eng J 97(2–3):115–129. doi:10.1016/S1385-8947(03)00150-5

    Article  CAS  Google Scholar 

  37. Schmidt M, Lipson H (2009) Distilling free-form natural laws from experiment al data. Science 324(5923):81–85. doi:10.1126/science.1165893

    Article  PubMed  CAS  Google Scholar 

  38. Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE: rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06)

Download references

Acknowledgments

This work was partly supported by the Council of Scientific and Industrial Research (Network project: Tapcoal), Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Tambe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghugare, S.B., Tiwary, S., Elangovan, V. et al. Prediction of Higher Heating Value of Solid Biomass Fuels Using Artificial Intelligence Formalisms. Bioenerg. Res. 7, 681–692 (2014). https://doi.org/10.1007/s12155-013-9393-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9393-5

Keywords

Navigation